Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Japan Atomic Energy Agency; Contribution to the decommissioning of the Fukushima Daiichi Nuclear Power Station and the reconstruction of Fukushima Prefecture at the Naraha center for Remote Control technology development

Morimoto, Kyoichi; Ono, Takahiro; Kakutani, Satomi; Yoshida, Moeka; Suzuki, Soichiro

Journal of Robotics and Mechatronics, 36(1), p.125 - 133, 2024/02

The Naraha Center for Remote Control Technology Development was established for the purpose of developing and verifying remote control equipment for promoting the decommissioning of the Fukushima Daiichi Nuclear Power Station and the external use of this center was started in 2016. The mission of this center is to contribute to the decommissioning of the Fukushima Daiichi Nuclear Power Station and for the reconstruction of Fukushima Prefecture. In this review, we describe the equipment related to the full-scale mock-up test, the component test for a remote-control device and the virtual reality system in this center. In addition, the case examples for usage of these equipment are introduced.

JAEA Reports

Design and produce training-way system for crawler-type robots against nuclear emergency of JAEA facilities

Tsubaki, Hirohiko; Koizumi, Satoshi*

JAEA-Technology 2020-016, 16 Pages, 2020/11

JAEA-Technology-2020-016.pdf:2.96MB

Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development is the main part of the nuclear emergency response team of JAEA deal with Act on Special Measures Concerning Nuclear Emergency Preparedness. The section needs to train operators from every nuclear facility in JAEA to control crawler-type robots, and so on. A driving training of a crawler-type robot used a reciprocating passage (U-shaped passage look from above) is one of the important training programs. The section always assembled a reciprocating passage with borrowed parts from other sections for every training of being used the passage. The section designed and produced training-way system included a reciprocating passage with stairs in 2019 fiscal year. The system makes the section members labor-saving, possible to set any time for training and diverse training-ways with easy assembling system. This report shows design and produce training-way system for crawler-type robots against nuclear emergency of JAEA facilities by Maintenance and Operation Section for Remote Control Equipment.

JAEA Reports

Design and mounting advanced wireless communication equipment on the crawler-type robots for tasks and on the crawler-type scouting robot

Nishiyama, Yutaka; Iwai, Masaki; Tsubaki, Hirohiko; Chiba, Yusuke; Hayasaka, Toshiro*; Ono, Hayato*; Hanyu, Toshinori*

JAEA-Technology 2020-006, 26 Pages, 2020/08

JAEA-Technology-2020-006.pdf:2.43MB

Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development is the main part of the nuclear emergency response team of JAEA deal with Act on Special Measures Concerning Nuclear Emergency Preparedness. The section needs to remodel crawler-type robots for tasks, crawler-type scouting robots, and so on. About two crawler-type robots for tasks, the section designed and mounted advanced wireless communication equipment on manipulators mounted on the two robots. The crawler part of the robot has been able to be controlled by way of the new equipment, and when it is broken down, it can be changed by way of an original equipment. And the new equipment makes a single relay robot controllable both the crawler part and the manipulator part of the robot, in case of wireless relay robots being needed. And after checking the ability and characteristic about 5 wireless communication equipment, the section chose and mounted the best equipment on one crawler-type scouting robot. This report shows design and mounting advanced wireless communication equipment on the two crawler-type robots for tasks and on the one crawler-type scouting robot.

Journal Articles

Track3; Robot technology, remote control system

Kawabata, Kuniaki; Osumi, Hisashi*; Onishi, Ken*

Nihon Kikai Gakkai-Shi, 122(1211), p.16 - 17, 2019/10

no abstracts in English

JAEA Reports

Annual report for FY2016 on the activities of Naraha Center for Remote Control Technology Development (April 1, 2016 - March 31, 2017)

Naraha Center for Remote Control Technology Development, Fukushima Research Insitute

JAEA-Review 2018-014, 52 Pages, 2018/12

JAEA-Review-2018-014.pdf:5.62MB

The Naraha Remote Technology Development Center (Naraha Center) consists of a mock-up test building and a research management building, and various test facilities necessary for the decommissioning work after the accident of TEPCO Fukushima Daiichi Nuclear Power Station are installed. Using these test facilities, a wide range of users, such as companies engaged in decommissioning work, research and development institutions, educational institutions, etc., can efficiently develop robots through characterization and performance evaluation of remote-controlled robots. Furthermore, it is possible to make various uses such as exhibitions that many companies have met together, experts' meetings on decommissioning. This report summarizes the activities of the Naraha Center such as development of remote control technologies, maintenance and training of remote control equipment for emergency response, use of component test areas, and so on in FY2016.

Journal Articles

Development of control technology for the HTTR hydrogen production system

Nishihara, Tetsuo; Inagaki, Yoshiyuki

Nuclear Technology, 153(1), p.100 - 106, 2006/01

 Times Cited Count:9 Percentile:53.29(Nuclear Science & Technology)

Japan Atomic Energy Research Institute (JAERI) has performed the research and development of hydrogen production using the high temperature engineering test reactor (HTTR). One of the key issues for the HTTR hydrogen production system is the development of control technology for stable operation. A thermal load absorber concept using a steam generator installed downstream of a reformer is proposed to mitigate a variation of helium temperature. Thermal hydraulic analyses for the start up operation and the suspension of feed gas supply to the reformer are carried out. These results show that a large variation of the reformer outlet helium temperature takes place due to a change of the feed gas flow rate. However the steam generator can mitigate the variation of helium temperature. It is clarified that the HTTR can continue normal operation independently of the feed gas flow rate.

Journal Articles

Study on control characteristics for HTTR hydrogen production system with mock-up test facility; System controllability test for fluctuation of chemical reaction

Inaba, Yoshitomo; Ohashi, Hirofumi; Nishihara, Tetsuo; Sato, Hiroyuki; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji

Nuclear Engineering and Design, 235(1), p.111 - 121, 2005/01

 Times Cited Count:8 Percentile:49.02(Nuclear Science & Technology)

Prior to the connection of a hydrogen production plant to the HTTR, the fluctuation tests of the chemical reaction in the steam reformer with the mock-up test facility of the HTTR hydrogen production system were carried out for the establishment and demonstration of the control technology. As a result, it was shown that the HTTR hydrogen production system with the same control system as the mock-up test facility can provide stable controllability for any disturbance at the steam reformer without the influence to the reactor. In addition, a dynamic simulation code for the HTTR hydrogen production system was verified with the obtained test data.

Journal Articles

Development of control technology for the HTGR hydrogen production system

Nishihara, Tetsuo; Inagaki, Yoshiyuki

Proceedings of GLOBAL2003 Atoms for Prosperity; Updating Eisenhower's Global Vision for Nuclear Energy (CD-ROM), p.320 - 324, 2003/00

HTGR hydrogen production system has potential possibility to provide hydrogen without CO$$_{2}$$ emission. Key technology for developing this system is to establish the control technology for preventing propagation of thermal turbulence from the hydrogen production system to the HTGR. Japan Atomic Energy Research Institute (JAERI) has planed a demonstration test of hydrogen production using an HTGR named high temperature engineering test reactor (HTTR) to develop the control technology. Thermal load absorber concept using the steam generator located downstream of the chemical reactor is proposed to mitigate the variation of outlet helium temperature of the chemical reactor. This concept leads to the stable controllability and enables to operate the HTGR and the hydrogen production plant independently. Plant simulation analyses are carried out to verify the performance of this concept.

Journal Articles

Motion of bubbles in ultrasonic field

Anoda, Yoshinari; Watanabe, Tadashi; Kukita, Yutaka

Proc. of the Int. Conf. on Multiphase Flows 91-TSUKUBA,Vol. 1, p.397 - 400, 1991/00

no abstracts in English

Journal Articles

The Situation of JPDR decommissioning

; Ikezawa, Yoshio

Hoken Butsuri, 25(3), p.294 - 298, 1990/00

no abstracts in English

11 (Records 1-11 displayed on this page)
  • 1